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We investigate the standard susceptible-infected-susceptible model on a random network to study the effects
of preference and geography on diseases spreading. The network grows by introducing one random node with
m links on a Euclidean space at unit time. The probability of a new node i linking to a node j with degree kj

at distance dij from node i is proportional to kj
A /dij

B, where A and B are positive constants governing preferential
attachment and the cost of the node-node distance. In the case of A=0, we recover the usual epidemic behavior
with a critical threshold below which diseases eventually die out. Whereas for B=0, the critical behavior is
absent only in the condition A=1. While both ingredients are proposed simultaneously, the network becomes
robust to infection for larger A and smaller B.
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The classical mathematical approach to diseases spread-
ing either ignores the population structure or treats popula-
tions as distributed in a regular medium �1,2�. However, it
has been suggested recently that many social, biological, and
communication systems possess two universal characters, the
small-world effect �3� and the scale-free property �4�, which
can be described by complex networks whose nodes repre-
sent individuals and links represent interactions among them
�5,6�. In view of the wide occurrence of complex networks in
nature, it is important to study the effects of topological
structures on the dynamics of epidemic spreading. Pioneer-
ing works �7–11� have given some valuable insights: for ho-
mogeneous networks �e.g., exponential networks�, there are
critical thresholds of the spreading rate below which infec-
tious diseases will eventually die out; on the contrary, even
infections with low spreading rates will prevail over the en-
tire population in heterogeneous networks �e.g., scale-free
networks�. This radically changes many conclusions drawn
from classic epidemic modelling. Furthermore, it has been
observed that the heterogeneity of a population network in
which the disease spreads may have noticeable effects on the
evolution of the epidemic as well as the corresponding im-
munization strategies �12–16�.

For many real networks, however, individuals are embed-
ded in a Euclidean space and the interactions among them
usually depend on their spatial distances and take place
among their nearest neighbors �17–19�. For instance, the
number of long-ranged links and the number of edges con-
nected to a single node are limited by the spatial embedding,
particularly in planar networks. Preferential attachment is
weakened by geographical embedding �18�. Also, people
have proved that the characteristic distance plays a crucial
role in the dynamics taking place on those networks �20–23�.
Thus, it is natural to study associated influences of prefer-
ence and geography on epidemic spreading. But up to now
only a few of works address this problem, e.g., modeling
transmission as a function of geographical distance �24,25�
availably capturing the dynamics of diseases in wild and
domesticated animals �26,27�.

In this paper, we study the standard susceptible-infected-
susceptible �SIS� model on a growing network in Euclidean
space. On a vertical plane, the growth of the network de-
pends jointly on two mechanisms, preference and geography.
The placement of links is driven by competition between
preferential attachment and distance dependence. In the case
that the network grows with geographical constraint, we re-
cover the usual epidemic behavior with a critical threshold
below which diseases will eventually die out. While the net-
work is totally governed by preferential attachment, the epi-
demic behavior depends on the preferential exponent. When
both factors are considered simultaneously, it becomes diffi-
cult for epidemic spreads as the preference has an over-
whelming majority than the geography.

Specifically in the two-dimensional x-y plane, we con-
sider a square of unit size and with periodic boundary con-
ditions. To construct a network of N nodes, let �x1 ,x2 , . . . ,xN�
and �y1 ,y2 , . . . ,yN� be the 2N independent random variables
identically and uniformly distributed within the interval �0,
1�. A specific set of values of the random variables
��x1 ,y1� , �x2 ,y2� , . . . , �xN ,yN�� is chosen to represent the co-
ordinates of the N randomly distributed nodes �23�. The net-
work starts with m0 nodes and then the other nodes with m
links are added one by one at each time step according to
their serial numbers i=m0+1 to N. Following ideas proposed
by Yook et al. �18�, the probability that a new node i links to
a old node j with kj links at distance dij from node i is

� �ki,dij� �
kj

A

dij
B , �1�

where A and B are positive constants, governing preferential
attachment and the cost of the node-node distance. We note
following interesting features. �i� In the case of A=0, the
network is geographically grown with an exponential distri-
bution of nodes’ degree �see Fig. 1�a��. In the limit of B
→�, only the smallest value of d corresponding to the near-
est node will contribute with probability 1 �18�. �ii� In the
case of B=0, the network reduces to the Barabási-Albert
�BA� graph only for A=1. In the region 0�A�1, the nodes’
degree distribution is stretched exponential. For A�1, a fi-*jfmendes@fis.ua.pt
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nite number of nodes connect to nearly all other nodes �28�.
That is illustrated by Fig. 1�b�.

To estimate the effect of the network’s topology on epi-
demic dynamics, we will investigate the standard SIS model
�8�. This model relies on a coarse-grained description of in-
dividuals in the population. Namely, each node of the net-
work represents an individual and each link is a connection
along which the infection can spread to other individuals.
The individuals can only exist in two states, susceptible and
infected. At each time step, each susceptible node is infected
with probability � if it is connected to one or more infected
nodes. At the same time, the infected nodes become suscep-
tible again with probability �, defining an effective spreading
rate �=� /�. We can set �=1 without lack of generality, since
it only affects the definition of the time scale of the virus
propagation. Individuals run stochastically through the cycle
susceptible→ infected→susceptible.

Let us focus on the case A=0 first, i.e., the network grows
with geographical constraint. According to Eq. �1�, the pref-
erential attachment is excluded. Since all nodes are uni-
formly distributed in the square, the only effect of the factor
B is determining the average path length of the network
while the degree distribution of nodes has the same behavior.
For small B, the role of node-node distance is weak and old
nodes are linked with approximate randomness. When B be-
comes large, the geographical influence is strong and only
nodes around the new one will be connected with large pos-
sibility, hence the local clustering. This feature is reflected in
Table I, that is, the average path length L and the clustering
coefficient C get larger with the increase of B.

Figure 2 shows the evolution of the infected nodes density

as a function of time for epidemics with �=0.15. We start
from a single infected node of the network, and iterate the
rules of the SIS model with parallel updating. Each curve
represents the average over ten different starting configura-
tions, performed on ten different realizations of the random
networks. We clearly notice a great influence of the geogra-
phy on the spreading velocity of diseases, namely, the
smaller the parameter B is, the more fast the infection propa-
gates. For finite B, since the geography does not change the
network’s connectivity distribution �see Fig. 1�a��, the evo-
lution of node i’s degree can be written as

dki�t�
dt

	
m

t
, �2�

with the initial condition ki�i�=m. One can easily write the
solution

ki�t� = m
ln
t

i
+ 1� , �3�

and accordingly obtain the degree distribution

P�k� =
1

t
�
i=1

t

��ki�t� − k� =
1

m
e−k/m+1. �4�

In complex networks, the basic reproductive number takes
the form R0�k2� / k� �13�. In contrast to the classical result,
it defines an epidemic threshold �c= k� / k2�. Combining Eq.
�4�, we have

�c =
� k

1

m
e−k/m+1dk

� k2 1

m
e−k/m+1dk

=
2

5m
. �5�

In Fig. 3, we plot the steady density of infected nodes � as a
function of the spreading rate � for the case of A=0, which is
the time average of the fraction of infected individuals
reached after an initial transient regime. Simulations were
computed over 50 different starting configurations, per-

FIG. 1. Degree distributions of the generated networks with
m0=m=3 in two special cases A=0 �a� or B=0 �b�. The size of the
network is N=105.

TABLE I. The average path length L and clustering coefficient
C of the generated networks with size N=10 000 in the case of A
=0 for different values of B.

B L C

0.5 5.13�1� 0.00�1�
1 5.13�5� 0.00�2�
2 5.40�1� 0.03�9�
3 6.41�7� 0.19�2�
4 7.11�2� 0.31�0�

FIG. 2. Density of infected nodes � as a function of time t in the
network with A=0 and B=1,2 ,3, respectively. The spreading rate
is �=0.15. Simulations were performed on networks with N
=10 000 and m=m0=3.
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formed on 50 different realizations of the networks. The size
of networks is N=105. As shown in Fig. 3, all curves display
the same behavior and the SIS model exhibits an epidemic
threshold �c=0.12�2� �29�, despite the variety of B, which is
in agreement with the analytical prediction �c=2/ �5�3�
=0.133 �Eq. �5��. This is different than the results gained by
Santos et al., who also studied the SIS model on a homoge-
neous small-world network �30�, the critical value of �
changes smoothly as one varies the rewiring probability
without changing the degree distribution. In our model, the
increase of B gives rise to the average path length and the
clustering coefficient. Whereas in Ref. �30�, those network
features reduce with the increase of the rewiring probability.

Next, we will investigate the dynamics in the case of B
=0, i.e., the network grows following preferential attach-
ment. For the linear preference A=1, the generated network
reduces to the exact BA graph. As shown in Fig. 4, the be-
havior of the density of infected nodes follows the property,
��e−1/m� �11�, which implies the surprising absence of any
epidemic threshold in the model, i.e., �c=0. As to the non-
linear case, we first consider the region A�1 and go down a
little from A=1. In this event, highly connected nodes be-
come less attractive for attachment compared with the linear
preference. The resulting degree distribution is of the form
�28� P�k��k−A exp�−	k1−A / �1−A��, where 	 is a positive

constant depends on A, 	=�k=2
� �i=2

k �1+	 / iA�−1. In the re-
gion A�1, the attractiveness of the old highly connected
nodes increases which results in a small number of nodes
that get all connections in the network. As shown in Fig. 4,
there are epidemic thresholds of the SIS model for A=0.5,
1.5, and 2, respectively. Furthermore, the threshold increases
as A becomes larger.

Finally, we plot the prevalence � in the A-B plane in Fig.
5 to shown the influence of the competition of two ingredi-
ents on infections. For �=0.15, there exists a set of peaks in
Fig. 5�a�. Namely, given the value of B, as A is increased
initially, the density of infected nodes � increases gradually
and reaches a maximum for some value of A, and then de-
creases rapidly to 0 as A is increased further. Furthermore,
the contour planes of � takes an excursion to right with the
increase of B. We argue that the following factor should be
taken into account to understand this performance. Accord-
ing to Eq. �1�, as B increases, the new nodes are preferential
to connect their nearest neighbors, which results in the de-
crease of the number of long-ranged links. The network be-
comes more local clustering and robust to epidemic spread-
ing. To keep the same prevalence, the effect of node’s degree
should be strengthened, i.e., increases A. Thus the contour
planes lean to right as B becomes larger. For �=0.5, the
prevalence � displays a different behavior. As shown in Fig.
5�b�, � decreases monotonically as A gets larger, and if B
decreases at the same time, the network becomes robust to
diseases.

To summarize, we have studied the SIS model on a ran-
dom network. On an Euclidean plane, the network grows
depending jointly on the preference and the geography. The
former indicates the attractiveness of highly connected nodes
and the later denotes the geographical constraint. It is found
that both factors have great influences on the infection. For

FIG. 3. Density of infected nodes � as a function of � in the
network with A=0 and B=0.5,1 ,2 ,4, respectively.

FIG. 4. Density of infected nodes � vs � �a� and 1/� �b� in the
network with B=0. The preference exponents are A=0.5 �closed
squares�, 1 �open circles�, 1.5 �closed diamonds�, and 2 �open tri-
angles�, respectively.

FIG. 5. Density of infected nodes � in A-B plane for the spread-
ing rate �=0.15 �a� and 0.5 �b�, respectively.

IMPACTS OF PREFERENCE AND GEOGRAPHY ON… PHYSICAL REVIEW E 76, 056109 �2007�

056109-3



the network growing with the geographically constraint �A
=0�, we recover the usual epidemic behavior with a critical
threshold below which diseases will eventually die out.
While the network is purely governed by preferential attach-
ment �B=0�, the epidemic behavior depends on the prefer-
ential exponent and the critical phenomenon is absent only in
the condition A=1. When both factors are present simulta-
neously, the network becomes robust to diseases as the pref-

erence has an overwhelming majority than the geography. In
real world, agents located on different positions according to
the competition between the preference and the geography.
The above description of the spreading dynamics might con-
tribute to understanding realistic epidemics.
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